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Iso-PrNH, reacts with fat-( CO),Mo( PCl& to form fuc- [ ( i-PrNH)3P] 3M~( CO)3, 
io coZ.n#?x ciX+a~~g a uZZ$ue combina2&r of s&X?Z?&Zry am&?-g.rWJ? fun.?- 
tionality and tris( aminophosphino) substitution on molybdenum. 

Although examples of tris(phosphino)molybdenum tricarbonyls, L,Mo( CO), 
(L = phosphine), are known [ 1,2], tricarbonyls containing 3 aminophosphino 
moieties, i.e. (RR’N)3P, coordinated to molybdenum are rare [3,4]. Attempts 
to synthesize such molecules by (Me,N),P reaction with MOM or C&H8 l 
Mo(‘CO), (C,Hs = cycloheptatriene) result instead in formation of the fetracar- 
bony1 disproportionation products cis- and trans-[(MezN)BP] ZM~(CO)4 [5, 61. 
Recently we undertook studies of (CO),Mo(PCL,),amine reactions and found 
that with i-PrNHz, the new complex fac-[(i-PrNH)3P] ,Mo(CO), is formed, 
apparently the first example of a highly functional tris(secondary aminophos- 
phino)-substituted molybdenum tricarbonyl. 

Reaction of i-PrNHz (75 mmol) with fa~-(PCl~)~Mo(C0)~ [7] (4.0 mmol) 
in toluene during 8 h at 25°C [8] results in rapid elimination of i-PrNH&l 
and formation of fat-[(i-PrNH),P] jM~~(C0)3 (1) [9, lo] as shown in eq. 1. 

fat-(PCl,),Mo(CO), + 18 i-PrNH, + 

9 i-PrNH&l + fuc-[ ( i-PrNH)3P] ,Mo(CO), 
(1) 

(1) 
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The reaction is analogous to those between (CO)SMoPCl, and RNHz (R = 
H, Me, i-Pr, Ph, NHPh) which yield the monophosphinoamine complexes 
(C0)5MoP(NHR)3 [ 11-141. During a longer reaction period, 60 h at 25”C, 
i-PrNH* and (PCI,),Mo(CO), react further to the diphosphinoamine complex 
i-PrN[ (i-PrNH),P] ,Mo(CO)+ (2) [9,15]. In contrast, the E&N (24 mmol) 

: 

’ ‘P(NHRl 

(RNH)2pAMoz 2 
(CO), 

(2,R = i-Pi-; 3,R = Ph) 

PhN AP\ NPh 

I I 

NPh 

I 
F2P,b4p” 

(CO), 

(5) 

promoted reaction of PhNHz (20 mmol) with (PCl,),Mo(CO), (2.3 mmol) at 
25°C forms directly the diphosphinoamine complex PhN[(PhNH),P] 2Mo(C0)4 
(3) [ 16, 171 without formation of an isolatable tris complex, e.g. [(PhNH),P] 3- 
MOM. Although the tris(triaminophosphino) complex 1 forms, it does not 
appear inclined to undergo metal ternplated P-N bond condensation and cyclo- 
oligomerization to a facially-coordinated cyclic product (4) as in eq. 2, in a 

NHR 

[l RNHJ3P13 Mo(CO), 

RN’l\NR 

- 3RNH, + MO 
I 

RNH!(,)PNHR 

(21 

R 

MO = Mo(CO), 1 
(4) 

reaction analogous to that whereby [PhNH),P] ,Mo(CO), eliminates PhNH? 
to form 3 [16]. 

Compound 1 was characterized by spectral data (MS, IR, ‘H and 31P NMR) 
[lo] and a single crystal X-ray analysis. Single crystal X-ray data were col- 
lected at 26-28°C using a Syntex Pi automated diffractometer (MO-K, radia- 
tion (h 0.71069 a), graphite monochromator). Crystal data: MoP~N~O~C~~H,~, 
formula weight 797 amu, trigonal crystal system, R3, a = b = 19.906(7) 8, 
c = 9.441(3)8,a =fi = 9O”,y = 120”, V= 3241(2)A3, Z= 3,Dobs = 1.23,D,,il, = 
1.22 g cmW3. Intensity data: e-28 scan mode, 3.0”<20<35.0*, 1815 reflections 
measured (635 unique) of which 432 were observed [Fi>3a(F$]. The MO and 
P atoms were located by heavy-atom methods, remaining atoms were located 
from a three dimensional difference map. The MO and P atoms were treated 
anisotropically. Data were reduced using Syntex (now Nicolet), and North- 
western University computing routines [ 18 J . Refinement converged at R = 
0.037 and R, = 0.045. 
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Fig. 1. Structure of fat-[(i-PrNIQPI ,Mo(CO)~ (1) showing the atom numbering scheme. Thermal 
ellipsoids are at the 50% probability level. Hydrogen atoms omitted for clarity. 

TABLE 1 

Selected Bond Distances (A) and Bond Angles to) in fat-l(i-PrNH),Pl ,Mo(CO), (1) 

Mo-P X545(7) NW-C(ll) 
MO-C(~) 1.90(2) N(2k-C(21) 
P-N(l) 1.67(l) N(3)--C(31) 
P-N(2) 1.67(l) C(l)_O(l) 
P-N(3) 1.65(2) 

1.49(2) 
1.50(2) 
1.51(2) 
1.21(2) 

MO-P-NC1 ) 106.4(5) 
MO-P-N(~) 126.6(5) 
MO-P-N(~) 112.4(4) 
Mo-CXl)-O(l) 179(2) 
P-MO-P 93.9(2) 
P-MO-C(~) 87.3(5) 
P-Mo-C(l’) 92.0(6) 
P-Mo-C(l”) 173.8(5) 

C(l)_Mo-C(l’) 
N(l)_P-N(2) 
N(l)_P-N(3) 
N(2)--P-N(3) 
P-N(l)-C(ll) 
P-N(2)-C(21) 
P-N(S)-C(31) 

86.6(7) 
98.7(6) 

116.2(6) 
96.5(6) 

130(l) 
124.8(g) 
127.4(9) 

The structure of 1 is shown in Fig. 1. Selected intramolecular bond param- 
eters are listed in Table 1. Three (i-PrNH)3P molecules are facially-coordinated 
to the MOM unit forming a complex with crystallographic and molecular 
point group C3 symmetry. The presence of a single sharp 31P NMR resonance 
and two characteristic car-bony1 IR stretching absorptions confirms the facial 
isomeric structure in solution also. The conformation at each tri(amino)phos- 
phine moiety is of the distorted C, type, similar to the situation observed previ- 
ously in other tri(amino)phosphinometal complexes [19]. In the limiting C, 
conformation, the phosphorus lone pair electrons are parallel to one and per- 
pendicular to two nitrogen lone pair electrons [ 201. In 1, the torsion angles 
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around P-N bonds, C( 21)-N( 2)-P-MO, C( ll)-N( l)-P-MO, and C( 31)- 
N(3)-P-MO, are 56, -175, and 178” [21], respectively. The mean P-N bond 
distance of 1.67( 1) ,& is within the 1.62-1.68 ,& range of P-N bonds in other 
aminophosphino-Mo carbonyl complexes [ 2, 191 and is shorter than the 
distances of 1.69-1.73 a reported for uncoordinated tri(amino)phosphines 
(PhNH)3P [18], [(CH,),N] 3P [(CH,),N = piperidinyl] [22] and (Me,N)3P 
[23]. The MO-P distance of 2.55 a is typical for phosphino-Mo complexes 
[ 2,241. However, the 1.90 a MO-C distance is shorter than usual (e.g. 1.97- 
2.05 A) [2, 24, 251. The cis LP-MO-P (94”) and LC-MO-C (87”) are greater 
than and less than 90”, respectively, perhaps the result of crowding among the 
facially coordinated (i-PrNH),P molecules. In light of this crowding it is surpris- 
ing that 1 is stable since some molybdenum complexes with bulky phosphine 
substituents [ 26, 271 such as tricyclohexylphosphine will not add three phos- 
phines but instead form five-coordinated complexes [ 271. 

The unstable (i-PrNH),P and (NH2)3P [ll, 231 are greatly stabilized by 
coordination to a MO carbonyl moiety. In contrast, (PhNH)3P appears stabi- 
lized less, since in both the PhNH, /(CO),M(PCl, )3 reaction product and 
[P(NHPh),] ,Mo(CO)~ [ 161, rapid PhNHz elimination occurs to form the di- 
phosphinoamine complex 3 [ 171. These metal-ternplated condensations re- 
semble that reported for fuc-[(PF,),NPh] JM~(CO)s which eliminates PF3 to 
form the novel complex P( PF,NPh),PMo( CO), (5) [ 41. Why unsubstituted or 
alkyl-substituted aminophosphines might be stabilized to a greater degree than 
arylaminophosphines is unclear. Studies of this and ways to catalyze the con- 
densation reactions of coordinated alkylaminophosphines are in progress cur- 
rently. 
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